Is it possible to extend IPv6?

Ana Custura Gorry Fairhurst

* University of Aberdeen with funding from RIPE NCC

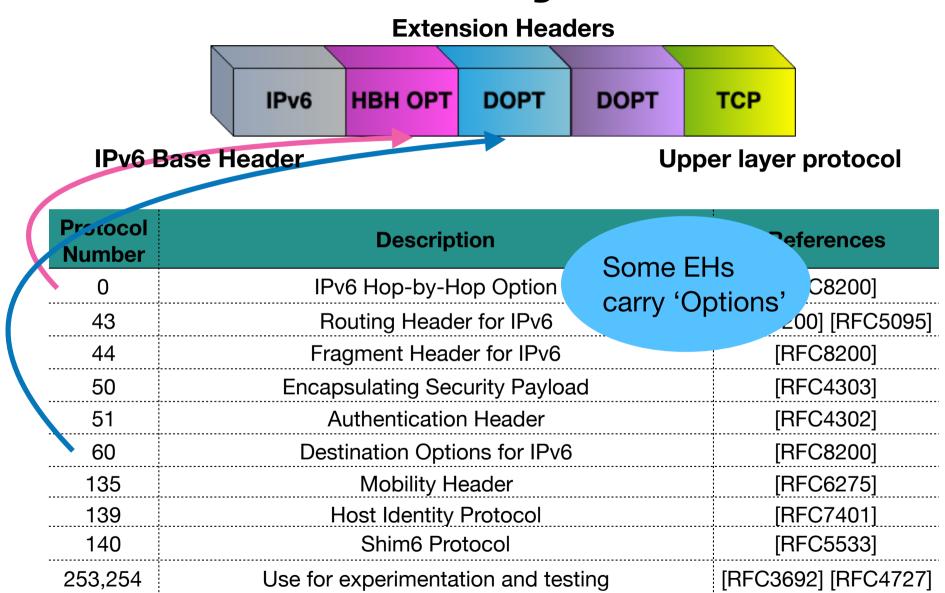
IPv6 promises

Fix to lack of IPv4 address space

- Larger Address Space
- More Efficient Forwarding/Routing
- Improved IP Packet Fragmentation*
- Multicast
- End-to-end Security (aka IPSEC)
- Extensibility

Fix to lack of extension in IPv4

*After some refinements


Other ways have emerged, such as QUIC

This project!

Our Project

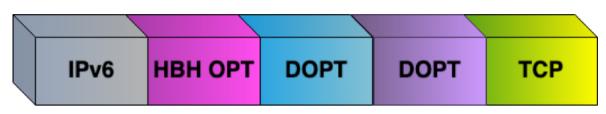
- Extend Pathspider to support different types and sizes of IPv6 Extension Headers
- Acquire and distribute 5 hardware measurement probes to be used as Core vantage points
- Measure EHs using Pathspider and RIPE Atlas
- Disseminate results @RIPE 86 and @IETF 116
- Publish a peer-reviewed measurement paper to understand IPv6 Extension Header deployment

Extensibility - EHs

https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml

EH concerns in RFC 9098 (2021)

- Slow-path processing of EHs
- Buggy implementations* -> DoS
- Complexity not bounded: can reduce router forwarding rate
- Large EH can exceed router parsing buffer


Some EHs had a rocky start

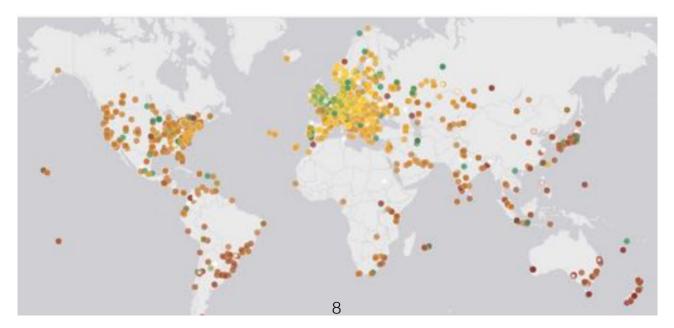
Measurements in RFC 7872 show many networks drop packets with EH

* To this date, vulnerabilities still found: https://www.interruptlabs.co.uk/articles/linux-ipv6-route-of-death

Renewed Interest in EHs

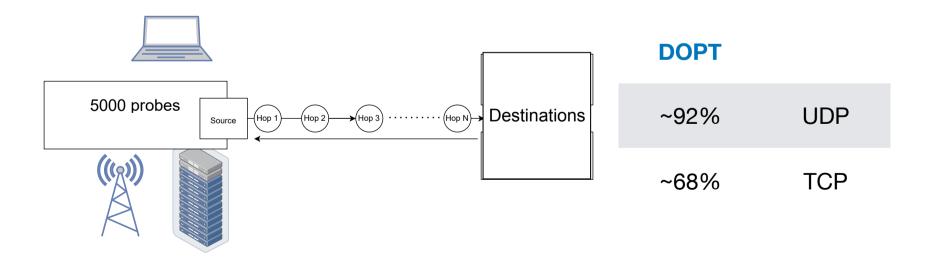
- IPv6 Segment Routing type (SRv6) [RFC8986]
- Service Management and Performance Measurement using PDM [RFC8250]
- In-situ Operations, Administration, and Maintenance [RFC9378]
- AltMark Measurement DO and HbH Options [RFC9343]
- minPMTU HBH Option [RFC9268]

ASCass aptions bingsted mare prices sin Ethe abtime speed!

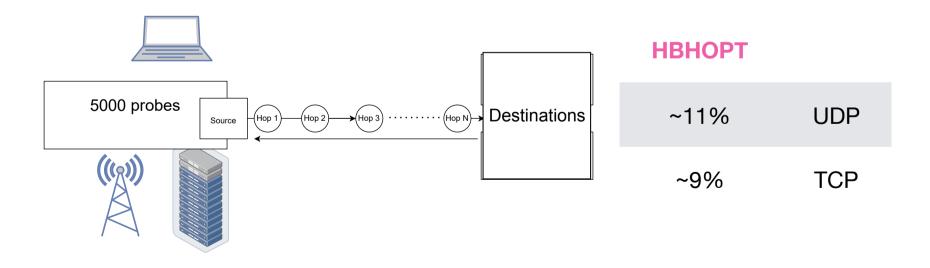

Existing Measurements

- Focus on Destination Options (DOPT) and Hop-by-Hop Options (HBHOPT) EHs
- Let's measure survival of packets with EH

	Destination Option EH	Hop-by-Hop Option EH
RFC 7872 (2016) [1] - server edge	80-90%	45-60%
My own (2018) data [2] - server edge	70-75%	15-20%
APNIC (2022) [3] - client edge	30-80%	0%
JAMES (2022) [4] - core	94-97%	8-9%


Experiment 1: Survival

- ~5500 IPv6-enabled probes in RIPE, globally distributed
- Testing survival by sending packets to 7 targets (UK, US, Canada, Australia, Zambia, Kazakhstan, France)
 - {TCP, UDP} to port 443
 - {**DOPT**, **HBHOPT**} + control IPv6 packets
 - Survives if packet reaches destination AS


Survival at a Glance DOPTs

- 8B PadN option
- High survival for **DOPTs**
- Difference between TCP and UDP

Survival at a Glance HBHOPTs

- 8B PadN option
- **HBHOPTs** survive some paths
- Difference between TCP and UDP

Per-AS Survival (UK path)

DOPT

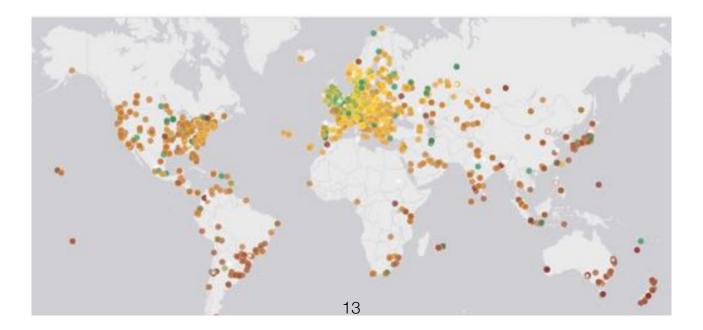
		IST AS	AST>AS2	00
The local AS is responsiblefor most of the drops:5% for UDP25% for TCP	DOPT UDP 8B	95.3%	93%	91.5%
	DOPT TCP 8B	74.7%	70%	68.5%

AC1. ACO

4 -1 10

HBHOPT		1st AS	AS1>AS2	2nd AS	AS2>AS3	œ
The local AS is responsible for most of the drops: • 68% for UDP • 74% for TCP	HBHOPT UDP 8B	31.4%	20.1%	15%	12.2%	11.4%
	HBHOPT TCP 8B	26.9%	16.3%	13.9%	9.7%	8.6%

Drops are considered to be within the AS if the next hop on a control measurement is also in that AS. If the next hop would otherwise be in a different AS, then the drop is attributed to the AS boundary.

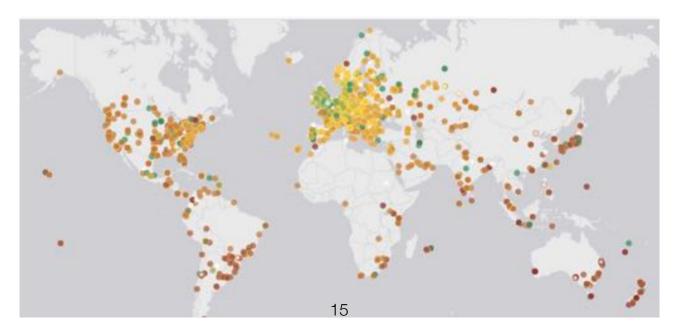

Why?

- Network/Firewall policy (e.g. Fastly)
- Different router designs
- Different devices (CPE, load balancers, firewalls, IDS) wanting access to upper layer protocols
- End-systems (NICs that do processing in hosts)
 - Is EH size a factor? Is full chain size a factor?

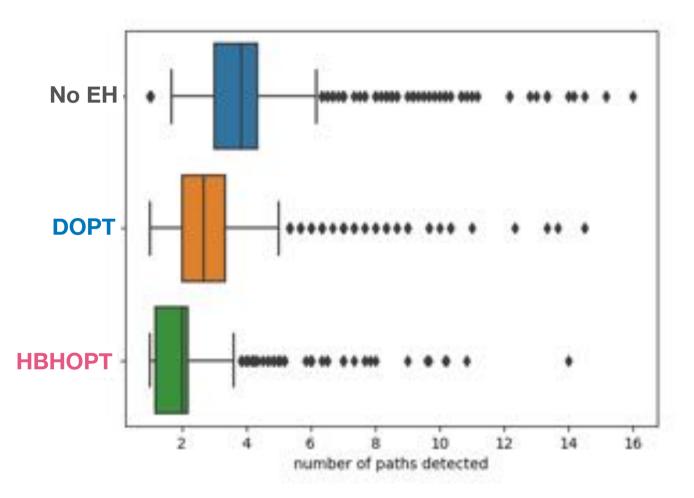
Experiment 2: Size

- {TCP, UDP} to port 443
 - {**DOPT**, **HBHOPT**} + control measurement
 - {8,16,32,40,48,56,64} B in size to one target
- Survival is successful if packet reaches destination AS

Traversal vs Size



- TCP sees the biggest drop in traversal at 48B: 48 + 20 = 68B (108B total)
- UDP sees the biggest drop at 56B: 56 + 8 = 64B (104B total)
- Is this due to EH size or IPv6 total chain size?
- 40B is the max for IPv4 options


Where EHs can be used, 40B often works

Experiment 3: ECMP

- ECMP uses header information for load-balancing
- UDP to port 443 from ~850 probes
 - {**DOPT**, **HBHOPT**} + control measurement
 - We measure 16 Paris ID variations to the same target (Flow Label + source port combinations)

Statistics: ECMP

- Not all devices are equipped to handle flows that mix packets with and without EHs
 - Motivates the use of Flow Label for ECMP

Flow Label

- Can we investigate FL impact in Load Balancing
 - Do routers even look at this?
 - Does the FL help when using an EH?
- Thought a new test was needed in Ripe Atlas to control the FL in Paris measurements
 - Turns out we don't need to: half of all Atlas probes don't set it!

Project status

- Extend Pathspider to support different types and sizes of IPv6 extension headers - Done
- Measure EHs using Pathspider and RIPE Atlas **Done**
- Acquire and distribute 5 hardware measurement probes to be used as Core vantage points - Done, software probes** due to hw supply issues :(
- Disseminate results @RIPE 86 and @IETF 116 Done
- Publish a peer-reviewed measurement paper to understand IPv6 Extension Headers - In review

Outcomes

- Presentations at the IETF, RIPE, also in the UK
 @Networkshop: lots of useful discussion
- Data helped publish a paper (in review)
- Data helped progress an IETF draft
 - Found a new way to use Ripe Atlas data

..Flow Label results coming soon!

So, is it possible to extend IPv6?

• Options:

...within a domain? It is low-risk, can be and IS done now

...opportunistically in the Internet? DOPTs almost there

- Firewalls sometimes needed, but barriers bad for innovation
- More capable ASICs > Forwarding + processing without impacting performance
- Measurements help understand deployment challenges!

References

- [1] <u>https://www.rfc-editor.org/rfc/rfc7872</u>
- [2] <u>https://datatracker.ietf.org/meeting/108/</u> <u>materials/slides-108-6man-sessb-exploring-ipv6-</u> <u>extension-header-deployment-updates-2020-01</u>
- [3] https://blog.apnic.net/2022/10/13/ipv6extension-headers-revisited/
- [4] https://datatracker.ietf.org/doc/draft-vynckev6ops-james/